nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 06, v.9 39-45
基于卷积神经网络的中医医案诊断分类方法
基金项目(Foundation): 江西省科技厅重点研发计划项目(20171ACG70011);江西省科技厅重点研发计划项目(20203BBG72W008)
邮箱(Email):
DOI: 10.19850/j.cnki.2096-4706.2025.06.008
摘要:

针对中医医案诊断分类研究中上下文语义捕捉不足,难以有效捕捉长距离依赖信息以及分类精确度低等问题,提出了一种结合文本卷积神经网络(TextCNN)和门控循环单元(GRU)的混合模型。首先,利用Word2Vec模型对词向量进行训练,构建局部词向量库。其次,采用文本卷积神经网络对中医医案文本进行特征提取,以捕捉局部重要信息。最后,利用门控循环单元对提取的特征进行上下文信息建模,从而显著增强模型对长依赖关系的处理能力。实验结果表明,该模型在中医医案诊断文本分类任务中表现出色,预测精度达到85.01%,F1值为81.86%。

Abstract:

Aiming at the problems of insufficient context semantic capture,difficulty in effectively capturing long-distance dependence information and low classification accuracy in the study of TCM medical records diagnosis and classification,a hybrid model combining Text Convolutional Neural Network (TextCNN) and Gated Recurrent Unit (GRU) is proposed.Firstly,the Word2Vec model is used to train the word vector and construct the local word vector library.Secondly,the TextCNN is used to extract the text features of TCM medical records to capture local important information.Finally,the GRU is used to model the context information of the extracted features,thereby significantly enhancing the model's ability to process long dependencies.The experimental results show that the model performs well in the text classification task of TCM medicals records diagnosis,the prediction accuracy reaches 85.01%,and the F1 value is 81.86%.

参考文献

[1]易钧汇,查青林.中医症状信息抽取研究综述[J].计算机工程与应用,2023,59(17):35-47.

[2]刘刚刚,高鲁,谢欣昇,等.数字中医学的研究进展[J].中华中医药学刊,2024,42(9):9-12.

[3]THOMPSON P.Looking Back:On Relevance,Probabilistic Indexing and Information Retrieval[J].Information Processing & Management,2007,44(2):963-970.

[4]ZHAO W D,ZHU L,WANG M,et al.WTL-CNN:A News Text Classification Method of Convolutional Neural Network Based on Weighted Word Embedding[J].Connection Science,2022,34(1):2291-2312.

[5]HE D P,HE Z L,LIU C.Recommendation Algorithm Combining Tag Data and Naive Bayes Classification[C]//2020 3rd International Conference on Electron Device and Mechanical Engineering(ICEDME).Suzhou:IEEE,2020:662-666.

[6]ZHANG M Y,AI X B,HU Y Z.Chinese Text Classification System On Regulatory Information Based On SVM[J].IOP Conference Series:Earth and Environmental Science,2019,252(2):022133.

[7]CHEN Z,ZHOU L J,LI X D,et al.The Lao Text Classification Method Based on KNN[J].Procedia computer science,2020,166:523-528.

[8]DIENG A B,WANG C,GAO J F,et al.TopicRNN:A Recurrent Neural Network with Long-Range Semantic Dependency[J/OL].arXiv:1611.01702[cs.CL].[2024-09-18].https://arxiv.org/abs/1611.01702.

[9]ZHOU Y J,LI J L,CHI J H,et al.Set-CNN:A Text Convolutional Neural Network Based on Semantic Extension for Short Text Classification[J/OL].Knowledge-based systems,2022,257:109948.[2024-09-18].https://www.sciencedirect.com/science/article/abs/pii/S0950705122010413?via%3Dihub.

[10]ZHANG C,GAO R Z,MA X Y,et al.W-TextCNN:A TextCNN Model With Weighted Word Embeddings for Chinese Address Pattern Classification[J/OL].Computers,environment and urban systems,2022,95:101819.https://www.sciencedirect.com/science/article/abs/pii/S0198971522000631?via%3Dihub.

[11]GUO B,ZHANG C X,LIU J M,et al.Improving Text Classification with Weighted Word Embeddings Via A Multi-Channel TextCNN Model[J].Neurocomputing,2019,363:366-374.

[12]TRANG P T Q,THANG B M,HAI D T.Single Concatenated Input is Better than Indenpendent Multiple-input for CNNs to Predict Chemical-induced Disease Relation from Literature[J].VNU Journal of Science:Computer Science and Communication Engineering,2020,36(1):11-16.

[13]DEVLIN J,CHANG W M,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[J].Conference on the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2019:3498-4195.

[14]姜惠杰,查青林.基于孪生网络的中医医案主诉匹配方法[J].现代信息技,2023,7(23):122-126.

[15]姜惠杰,查青林.基于语义增强的中医医案主诉匹配方法[J].现代信息科技,2023,7(24):142-146.

[16]席宁丽,朱丽佳,王录通,等.一种Word2vec构建词向量模型的实现方法[J].电脑与信息技术,2023,31(1):43-46.

[17]汪烨,周澳回,周思源,等.智能计算服务的需求获取方法[J].计算机应用,2022,42(11):3486-3492.

[18]王侃,王孟洋,刘鑫,等.融合自注意力机制与CNN-BiGRU的事件检测[J].西安电子科技大学学报,2022,49(5):181-188.

基本信息:

DOI:10.19850/j.cnki.2096-4706.2025.06.008

中图分类号:R249;TP183;TP391.1

引用信息:

[1]邱雪峰,查青林,苗震等.基于卷积神经网络的中医医案诊断分类方法[J].现代信息科技,2025,9(06):39-45.DOI:10.19850/j.cnki.2096-4706.2025.06.008.

基金信息:

江西省科技厅重点研发计划项目(20171ACG70011);江西省科技厅重点研发计划项目(20203BBG72W008)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文